We establish a broad methodological foundation for mixed-integer optimization with learned constraints. We propose an end-to-end pipeline for data-driven decision making in which constraints and objectives are directly learned from data using machine learning, and the trained models are embedded in an optimization formulation. We exploit the mixed-integer optimization-representability of many machine learning methods, including linear models, decision trees, ensembles, and multi-layer perceptrons, which allows us to capture various underlying relationships between decisions, contextual variables, and outcomes. We also introduce two approaches for handling the inherent uncertainty of learning from data. First, we characterize a decision trust region using the convex hull of the observations, to ensure credible recommendations and avoid extrapolation. We efficiently incorporate this representation using column generation and propose a more flexible formulation to deal with low-density regions and high-dimensional datasets. Then, we propose an ensemble learning approach that enforces constraint satisfaction over multiple bootstrapped estimators or multiple algorithms. In combination with domain-driven components, the embedded models and trust region define a mixed-integer optimization problem for prescription generation. We implement this framework as a Python package (OptiCL) for practitioners. We demonstrate the method in both World Food Programme planning and chemotherapy optimization. The case studies illustrate the framework's ability to generate high-quality prescriptions as well as the value added by the trust region, the use of ensembles to control model robustness, the consideration of multiple machine learning methods, and the inclusion of multiple learned constraints.


翻译:我们为混合整形优化建立了广泛的方法基础,以便根据所了解的限制因素进行混合整形优化。我们建议为数据驱动决策提供端到端的管道,在其中直接从使用机器学习的数据中学习制约因素和目标,并将经过培训的模式嵌入优化的配方。我们利用混合整形优化-可展示的许多机器学习方法,包括线性模型、决策树、组合和多层透视,使我们能够捕捉决定、背景变量和结果之间的各种基本关系。我们还采用两种办法处理从数据中学习的内在不确定性。首先,我们用多层观察的组合来描述决策信任区域,以确保提出可信的建议和避免外推法。我们有效地采用这种混合整形优化的表示方式,利用专列生成的立体生成和高层次数据集。然后,我们提出一种多层次的学习方法,在多层集成组件中,嵌入式模型和信任区域界定混合整形的整形整形整形整形整形整形整形整形整形能力。我们用这个框架,作为生成处方制的立式整形整形整形整形整形整形整形整形制,我们以演示式整形整形整形整形整形整形整形整形整形整形整形整形地研究。我们,将本方法,我们地研究,将本为制做为制做为制做为制做为制式整形整形整形整形整形整形整形整形整形整形整形整形整形制制制制制。我们制制制制制制。我们制。我们制制制制制制制制,我们制制制制制制,我们,我们制,我们制制制制,我们将本制制做为制制,我们将本制成为制制制制制制制制制制制制制制制制制制制制制制制制制制制制,我们制,我们制制制制制制制制,用制,我们用制制制制制制制制制制制制制,将本为制制制,用制制,用。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月11日
Arxiv
0+阅读 · 2023年3月11日
Arxiv
11+阅读 · 2022年9月1日
Arxiv
10+阅读 · 2021年2月26日
VIP会员
相关资讯
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员