Learning to align multiple datasets is an important problem with many applications, and it is especially useful when we need to integrate multiple experiments or correct for confounding. Optimal transport (OT) is a principled approach to align datasets, but a key challenge in applying OT is that we need to specify a transport cost function that accurately captures how the two datasets are related. Reliable cost functions are typically not available and practitioners often resort to using hand-crafted or Euclidean cost even if it may not be appropriate. In this work, we investigate how to learn the cost function using a small amount of side information which is often available. The side information we consider captures subset correspondence -- i.e. certain subsets of points in the two data sets are known to be related. For example, we may have some images labeled as cars in both datasets; or we may have a common annotated cell type in single-cell data from two batches. We develop an end-to-end optimizer (OT-SI) that differentiates through the Sinkhorn algorithm and effectively learns the suitable cost function from side information. On systematic experiments in images, marriage-matching and single-cell RNA-seq, our method substantially outperform state-of-the-art benchmarks.


翻译:在许多应用中,学习如何调整多个数据集是一个重要问题,当我们需要整合多个实验或纠正多种实验时,它特别有用。最佳运输(OT)是统一数据集的原则性方法,但在应用OT方面的一个关键挑战是,我们需要具体指定一个运输成本功能,精确地捕捉这两个数据集之间的关系。可靠的成本功能通常不存在,而且从业人员往往使用手工制作或Euclidean成本,即使可能不合适。在这项工作中,我们研究如何使用少量经常可用的侧信息来学习成本函数。我们考虑的侧信息包括子通信 -- -- 即两个数据集中某些子集的点是已知相关的。例如,我们可能将两个数据集中的一些图像标为汽车;或者我们可能从两批单细胞数据中有一个共同的附加注释的单元格类型。我们开发了一个端对端优化器(OT-SI),通过SinkhornNA算法来区分,并有效地从侧端信息中学习适当的成本功能。在系统化的单细胞实验中,在单细胞的图像中,在系统化的模型中,我们可能有一个常见的单细胞模型模型中,我们有一个常见的模型。

0
下载
关闭预览

相关内容

在数学优化,统计学,计量经济学,决策理论,机器学习和计算神经科学中,代价函数,又叫损失函数或成本函数,它是将一个或多个变量的事件阈值映射到直观地表示与该事件。 一个优化问题试图最小化损失函数。 目标函数是损失函数或其负值,在这种情况下它将被最大化。
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
45+阅读 · 2020年10月31日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月4日
Arxiv
15+阅读 · 2018年4月3日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员