Software vulnerabilities remain a critical security challenge, providing entry points for attackers into enterprise networks. Despite advances in security practices, the lack of high-quality datasets capturing diverse exploit behavior limits effective vulnerability assessment and mitigation. This paper introduces an end-to-end multi-step pipeline leveraging generative AI, specifically large language models (LLMs), to address the challenges of orchestrating and reproducing attacks to known software vulnerabilities. Our approach extracts information from CVE disclosures in the National Vulnerability Database, augments it with external public knowledge (e.g., threat advisories, code snippets) using Retrieval-Augmented Generation (RAG), and automates the creation of containerized environments and exploit code for each vulnerability. The pipeline iteratively refines generated artifacts, validates attack success with test cases, and supports complex multi-container setups. Our methodology overcomes key obstacles, including noisy and incomplete vulnerability descriptions, by integrating LLMs and RAG to fill information gaps. We demonstrate the effectiveness of our pipeline across different vulnerability types, such as memory overflows, denial of service, and remote code execution, spanning diverse programming languages, libraries and years. In doing so, we uncover significant inconsistencies in CVE descriptions, emphasizing the need for more rigorous verification in the CVE disclosure process. Our approach is model-agnostic, working across multiple LLMs, and we open-source the artifacts to enable reproducibility and accelerate security research. To the best of our knowledge, this is the first system to systematically orchestrate and exploit known vulnerabilities in containerized environments by combining general-purpose LLM reasoning with CVE data and RAG-based context enrichment.
翻译:暂无翻译