The existence of multiple load-solution mappings of non-convex AC-OPF problems poses a fundamental challenge to deep neural network (DNN) schemes. As the training dataset may contain a mixture of data points corresponding to different load-solution mappings, the DNN can fail to learn a legitimate mapping and generate inferior solutions. We propose DeepOPF-AL as an augmented-learning approach to tackle this issue. The idea is to train a DNN to learn a unique mapping from an augmented input, i.e., (load, initial point), to the solution generated by an iterative OPF solver with the load and initial point as intake. We then apply the learned augmented mapping to solve AC-OPF problems much faster than conventional solvers. Simulation results over IEEE test cases show that DeepOPF-AL achieves noticeably better optimality and similar feasibility and speedup performance, as compared to a recent DNN scheme, with the same DNN size yet elevated training complexity.
翻译:由于培训数据集可能包含与不同载荷溶解映射相匹配的数据点组合, DNN可能无法学习合法映射并产生低劣的解决方案。 我们提议将 DeepOPF-AL 作为一种强化学习的方法来解决这一问题。 我们的想法是培训 DNN, 以学习从一个扩大的输入(即,(装载,初始点),到一个具有负载和初始接收点的迭代 OPF 解析器产生的解决方案中的独特映射。 我们随后应用所学的扩大映射来解决 AC-OPF 问题, 比常规解算器要快得多。 模拟 IEEE 测试案例的结果显示, DeepOPF-AL 与最近的DNN 计划相比, 实现了明显更好的最佳性以及类似的可行性和加速性能, 与最近的 DNNN 计划相比, DNN 规模相同, 但培训复杂性却更高。