We study different domination problems of attacking and non-attacking rooks and queens on polyominoes and polycubes of all dimensions. Our main result proves that the problem is NP-complete for non-attacking queens on polyominoes and for non-attacking rooks on three-dimensional polycubes. We also analyze these problems on the set of convex polyominoes, for which we conjecture and give some evidence that these domination problems restricted to this subset of polyominoes might be NP-complete for both, queens and rooks. We have also computed new values for classical queen domination problems on chessboards (square polyominoes). For our computations, we have translated the problem into an integer linear programming instance. Finally, using this computational implementation and the game engine Godot, we have developed a video game of minimal domination of queens and rooks on randomly generated polyominoes.
翻译:我们主要结果证明,问题在于非攻击多聚人种和三维多立方体的母后和不攻击公鸡和女后。我们还在一系列 convex 多聚人种上分析这些问题,对此我们进行推测,并给出一些证据,说明这些限于这一组多聚人种的统治问题可能既对母体又对母体来说都是NP的完整。我们还计算了棋盘(quare poromonoces)的经典母后统治问题的新值。我们计算时,将问题转换成一个整形线性编程编程实例。最后,我们利用这一计算实施和游戏引擎Gotot,开发了一个关于最小控制母体和鼠对随机生成的多聚人种人种的游戏游戏游戏。