In this paper, we lay out a novel model of neuroplasticity in the form of a horizontal-vertical integration model of neural processing. The horizontal plane consists of a network of neurons connected by adaptive transmission links. This fits with standard computational neuroscience approaches. Each individual neuron also has a vertical dimension with internal parameters steering the external membrane-expressed parameters. These determine neural transmission. The vertical system consists of (a) external parameters at the membrane layer, divided into compartments (spines, boutons) (b) internal parameters in the sub-membrane zone and the cytoplasm with its protein signaling network and (c) core parameters in the nucleus for genetic and epigenetic information. In such models, each node (=neuron) in the horizontal network has its own internal memory. Neural transmission and information storage are systematically separated. This is an important conceptual advance over synaptic weight models. We discuss the membrane-based (external) filtering and selection of outside signals for processing. Not every transmission event leaves a trace. We also illustrate the neuron-internal computing strategies from intracellular protein signaling to the nucleus as the core system. We want to show that the individual neuron has an important role in the computation of signals. Many assumptions derived from the synaptic weight adjustment hypothesis of memory may not hold in a real brain. We present the neuron as a self-programming device, rather than passively determined by ongoing input. We believe a new approach to neural modeling will benefit the third wave of AI. Ultimately we strive to build a flexible memory system that processes facts and events automatically.
翻译:在本文中, 我们以神经处理的横向垂直整合模型的形式, 展示了新型的神经静态模型。 水平平面由神经元网络网络组成, 通过适应性传输链接连接到神经元的网络。 这符合标准的计算神经科学方法。 每个神经元都有一个垂直的维度, 由内部参数引导外部膜表达的参数。 这些决定神经传播。 垂直系统包括 (a) 膜层的外部参数, 分为隔间隔层( 松树、 布顿) ;(b) 子膜区和细胞表层的内部参数, 由蛋白质自动信号网络组成, 以及 (c) 基因和后脑信息核心的核心参数。 在这种模型中, 每一个节点( =中微量) 都有其自身的内部内存内存内存内存内存。 这是合成重力模型的重要概念进步。 我们讨论基于膜( 外部) 过滤和选择外部信号进行处理。 不是每个传输事件的内存内存内存内存内存内存内存内存内存的内存内存内存内存内存内存内存的内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内, 我们要显示内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存内存