Unsupervised video person re-identification (reID) methods usually depend on global-level features. And many supervised reID methods employed local-level features and achieved significant performance improvements. However, applying local-level features to unsupervised methods may introduce an unstable performance. To improve the performance stability for unsupervised video reID, this paper introduces a general scheme fusing part models and unsupervised learning. In this scheme, the global-level feature is divided into equal local-level feature. A local-aware module is employed to explore the poentials of local-level feature for unsupervised learning. A global-aware module is proposed to overcome the disadvantages of local-level features. Features from these two modules are fused to form a robust feature representation for each input image. This feature representation has the advantages of local-level feature without suffering from its disadvantages. Comprehensive experiments are conducted on three benchmarks, including PRID2011, iLIDS-VID, and DukeMTMC-VideoReID, and the results demonstrate that the proposed approach achieves state-of-the-art performance. Extensive ablation studies demonstrate the effectiveness and robustness of proposed scheme, local-aware module and global-aware module.


翻译:未经监督的视频人再身份识别(reID)方法通常取决于全球层面的特征。许多受监督的重新身份识别(reID)方法通常取决于全球层面的特征。许多受监督的重新身份识别(reID)方法采用了地方一级的特征,并取得了显著的绩效改进。然而,将地方一级的特征应用到不受监督的方法中,可能会造成一种不稳定的性能。为了改善未经监督的视频再身份识别(reID)的性能稳定性,本文件引入了一个通用的功能稳定性计划,使用部分模型和未经监督的学习。在该计划中,全球层面的特征被分为地方一级的平等特征。一个地方认知模块用于探索地方一级特征的孔径,用于进行不受监督的学习。提出了全球认知模块,以克服地方一级特征的劣势。这两个模块的特征被整合为每个输入图像的强势特征代表。这种特征的优点是地方一级特征的优点,而不受其劣势影响。在三个基准上进行了全面试验,包括PRID2011年、ILIDS-VID和DUCMTMC-VideoID, 和DUDUCMTMT-MS-VideoID, VIDEAID,结果表明拟议方法达到了当地状态的绩效,并展示了拟议的全球系统。

0
下载
关闭预览

相关内容

专知会员服务
20+阅读 · 2021年5月1日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
VIP会员
相关VIP内容
专知会员服务
20+阅读 · 2021年5月1日
Top
微信扫码咨询专知VIP会员