Portfolio methods represent a simple but efficient type of action abstraction which has shown to improve the performance of search-based agents in a range of strategy games. We first review existing portfolio techniques and propose a new algorithm for optimization and action-selection based on the Rolling Horizon Evolutionary Algorithm. Moreover, a series of variants are developed to solve problems in different aspects. We further analyze the performance of discussed agents in a general strategy game-playing task. For this purpose, we run experiments on three different game-modes of the Stratega framework. For the optimization of the agents' parameters and portfolio sets we study the use of the N-tuple Bandit Evolutionary Algorithm. The resulting portfolio sets suggest a high diversity in play-styles while being able to consistently beat the sample agents. An analysis of the agents' performance shows that the proposed algorithm generalizes well to all game-modes and is able to outperform other portfolio methods.
翻译:组合组合方法代表一种简单但有效的行动抽象学,它表明可以提高一系列战略游戏中基于搜索的代理器的性能。 我们首先审查现有的组合技术,并根据滚动地平线进化算法提出一种新的优化和选择行动的算法。 此外,还开发了一系列变量来解决不同方面的问题。 我们进一步分析在一般战略游戏任务中讨论过的代理器的性能。 为此,我们试验了斯特拉特加框架的三个不同的游戏模式。 为了优化代理器的参数和组合设置,我们研究了N-tuple Bandit Evolutionary Algorithm的使用情况。 由此产生的组合组合显示游戏模式的高度多样性,同时能够持续击败样本代理器。 对代理器的性能分析显示,拟议的算法对所有游戏模式都非常概括,并且能够超越其他组合方法。