Contraction theory is an analytical tool to study differential dynamics of a non-autonomous (i.e., time-varying) nonlinear system under a contraction metric defined with a uniformly positive definite matrix, the existence of which results in a necessary and sufficient characterization of incremental exponential stability of multiple solution trajectories with respect to each other. By using a squared differential length as a Lyapunov-like function, its nonlinear stability analysis boils down to finding a suitable contraction metric that satisfies a stability condition expressed as a linear matrix inequality, indicating that many parallels can be drawn between well-known linear systems theory and contraction theory for nonlinear systems. Furthermore, contraction theory takes advantage of a superior robustness property of exponential stability used in conjunction with the comparison lemma. This yields much-needed safety and stability guarantees for neural network-based control and estimation schemes, without resorting to a more involved method of using uniform asymptotic stability for input-to-state stability. Such distinctive features permit systematic construction of a contraction metric via convex optimization, thereby obtaining an explicit exponential bound on the distance between a time-varying target trajectory and solution trajectories perturbed externally due to disturbances and learning errors. The objective of this paper is therefore to present a tutorial overview of contraction theory and its advantages in nonlinear stability analysis of deterministic and stochastic systems, with an emphasis on deriving formal robustness and stability guarantees for various learning-based and data-driven automatic control methods. In particular, we provide a detailed review of techniques for finding contraction metrics and associated control and estimation laws using deep neural networks.


翻译:收缩理论是一种分析工具,用于研究非自主(即时间变换)非线性系统在以统一正数确定矩阵定义的收缩度标准下的不同动态。 收缩理论的存在导致对多种解决方案轨迹彼此的递增指数稳定性进行必要和充分的定性。 通过使用平方差长度作为Lyapunov类似的函数,其非线性稳定分析归结为找到一种适当的收缩度标准,该标准满足以线性矩阵不平等表示的稳定条件,表明在著名的线性系统理论和非线性系统收缩理论之间可以进行许多平行的比对。 此外,收缩理论利用了与比较伦性模型同时使用的指数稳定性指数性强的属性属性属性。 这使得以神经性网络为基础的控制和估算计划非常需要安全和稳定的保障,而不必采用更为复杂的方法,使用统一的、以线性稳定为基础的投入到国家的系统稳定。 这种独特的特征使得通过Convex优化系统构建一个收缩度指标,从而获得在时间-线性线性系统与收缩理论的距离上的明确指数约束。 因此,在目前对稳定性目标级的稳定性和正向后期的稳定性进行特定的估定趋势分析中,是使用一种特定的估测测测测测测测算法。

1
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
Arxiv
0+阅读 · 2022年2月23日
Arxiv
18+阅读 · 2021年3月16日
Arxiv
6+阅读 · 2019年12月30日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
Top
微信扫码咨询专知VIP会员