Byzantine agreement (BA), the task of $n$ parties to agree on one of their input bits in the face of malicious agents, is a powerful primitive that lies at the core of virtually every multi-party cryptographic protocol. Interestingly, in protocols with the best overall communication complexity, the communication demands of the parties are highly unbalanced: the amortized cost is $\tilde O(1)$ bits per party, but some parties must send $\Omega(n)$ bits. In best known balanced protocols, the overall communication is sub-optimal, with each party communicating $\tilde O(\sqrt{n})$. In this work, we ask whether asymmetry is inherent for optimizing total communication. Our contributions in this line are as follows: 1) We identify a cryptographic primitive, succinctly reconstructed distributed signatures (SRDS), that suffices for constructing $\tilde O(1)$ balanced BA. We provide two constructions of SRDS from different cryptographic and Public-Key Infrastructure (PKI) assumptions. 2) The SRDS-based BA follows a paradigm of boosting from "almost-everywhere" agreement to full agreement, and does so in a single round. We prove that PKI setup and cryptographic assumptions are necessary for such protocols in which every party sends $o(n)$ messages. 3) We further explore connections between a natural approach toward attaining SRDS and average-case succinct non-interactive argument systems for a particular type of "Subset-$f$" problems (generalizing Subset-Sum and Subset-Product). Collectively, our results provide an initial mapping for the feasibility landscape of $\tilde O(1)$ balanced BA, including new approaches forward, as well as limitations and barriers. Our approach yields the first two BA protocols with $\tilde O(1)$ balanced communication, offering a tradeoff between setup and cryptographic assumptions, and answering an open question presented by King and Saia (DISC'09).


翻译:拜占庭协议(BA)是美元方在恶意物剂面前商定其输入点之一的任务。 美元方在恶意物剂面前商定其输入点之一的任务,是一个强大的原始基础,几乎是每个多党加密协议的核心。 有趣的是,在具有最佳整体通信复杂性的协议中,各方的通信需求高度不平衡:摊销成本是每党1美元O(1)美元比特,但有些缔约方必须发送1美元比特。 在最已知的平衡协议中,总体通信是次优化的,每方沟通美元方(sqqrt{n})。 在这项工作中,我们询问是否内在不对称是优化全部通信的内在因素。 我们在这一线上的贡献如下:1) 我们确定了一个加密原始的、简洁重的分布签名(SRDS),这足以构建美元方的平衡的BA。我们提供了来自不同加密和公基基础设施(PKI)的开放性交易和平衡(S)假设的两种结构。 2 基于SDS- 以非成本方的理念, 提供了我们最先期协议和最高级的逻辑协议, 提供了我们最先展示的“最高级的智能协议 ” 和最高级协议。

0
下载
关闭预览

相关内容

SRDS:IEEE International Symposium on Reliable Distributed Systems。 Explanation:IEEE可靠分布式系统国际研讨会。 Publisher:IEEE。 SIT: http://dblp.uni-trier.de/db/conf/srds/
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
105+阅读 · 2020年5月3日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
4+阅读 · 2019年1月14日
Arxiv
9+阅读 · 2018年10月24日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员