In this paper, we design mother wavelets for the 1D continuous wavelet transform with some optimality properties. An optimal mother wavelet here is one that has an ambiguity function with minimal spread in the continuous coefficient space (also called phase space). Since the ambiguity function is the reproducing kernel of the coefficient space, optimal windows lead to phase space representations which are "optimally sharp." Namely, the wavelet coefficients have minimal correlations with each other. Such a construction also promotes sparsity in phase space. The spread of the ambiguity function is modeled as the sum of variances along the axes in phase space. In order to optimize the mother wavelet directly as a 1D signal, we pull-back the variances, defined on the 2D phase space, to the so called window-signal space. This is done using the recently developed wavelet-Plancharel theory. The approach allows formulating the optimization problem of the 2D ambiguity function as a minimization problem of the 1D mother wavelet. The resulting 1D formulation is more efficient and does not involve complicated constraints on the 2D ambiguity function. We optimize the mother wavelet using gradient descent, which yields a locally optimal mother wavelet.


翻译:在本文中, 我们为 1D 连续波子变换设计母波子。 最优母波子在连续系数空间( 也称为相片空间) 中具有最小分布的模糊功能。 由于模糊功能是复制系数空间的内核, 最佳窗口会导致“ 极快” 的相位空间表达。 也就是说, 波子系数具有最小的关联性。 这样的构造也会促进相位空间的宽度。 模糊功能的扩展以相位空间轴轴上差异的总和为模型。 为了直接优化母波子波子在连续系数空间( 也称为相位空间 ) 中的最小分布, 我们把在 2D 阶段空间定义的差异拉回到所谓的窗口信号空间。 这是使用最近开发的波子- Plancharel 理论来完成的。 这种方法可以将 2D 模糊功能的优化问题作为 1D 母波子的最小化问题。 由此产生的 1D 配制效率更高, 并且不会给 2D 模糊功能带来复杂的限制 。 我们用 梯子 优化母波子 。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
29+阅读 · 2020年7月31日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年5月29日
Arxiv
0+阅读 · 2021年5月28日
Arxiv
0+阅读 · 2021年5月28日
Arxiv
0+阅读 · 2021年5月27日
VIP会员
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员