We study locally differentially private (LDP) bandits learning in this paper. First, we propose simple black-box reduction frameworks that can solve a large family of context-free bandits learning problems with LDP guarantee. Based on our frameworks, we can improve previous best results for private bandits learning with one-point feedback, such as private Bandits Convex Optimization, and obtain the first result for Bandits Convex Optimization (BCO) with multi-point feedback under LDP. LDP guarantee and black-box nature make our frameworks more attractive in real applications compared with previous specifically designed and relatively weaker differentially private (DP) context-free bandits algorithms. Further, we extend our $(\varepsilon, \delta)$-LDP algorithm to Generalized Linear Bandits, which enjoys a sub-linear regret $\tilde{O}(T^{3/4}/\varepsilon)$ and is conjectured to be nearly optimal. Note that given the existing $\Omega(T)$ lower bound for DP contextual linear bandits (Shariff&Sheffe, 2018), our result shows a fundamental difference between LDP and DP contextual bandits learning.


翻译:在本文中,我们研究了当地差异私人强盗(LDP)的学习。首先,我们建议简单的黑盒减少框架,通过LDP保证解决大型无背景土匪学习问题。根据我们的框架,我们可以通过一点反馈,如私人强盗Convex优化化,改善以前私人强盗学习的最佳结果,并获得第一结果,根据LDP保证和黑盒性质,通过多点反馈,使我们的框架在实际应用中更具吸引力,比以前专门设计且相对较弱的无背景强盗(DP)的无背景强盗算法。此外,我们将我们的美元(valepsilon,\delta)$-LDP算法推广到通用的班迪茨,后者享有亚线性遗憾 $\tilde{O}(T ⁇ 3/4}/\varepslon),并被推测为近乎最佳的。注意到,鉴于现有的美元(Omega)在DP上相对直线性强盗(Sharif & Sheffe,2018)中,我们的基本结果显示在LDP学习上下基的变。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
159+阅读 · 2020年1月16日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
LibRec 每周算法:parameter-free contextual bandits (SIGIR'15)
LibRec智能推荐
5+阅读 · 2017年6月12日
Arxiv
0+阅读 · 2020年12月14日
Arxiv
0+阅读 · 2020年12月13日
Optimization and Learning With Nonlocal Calculus
Arxiv
0+阅读 · 2020年12月13日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
LibRec 每周算法:parameter-free contextual bandits (SIGIR'15)
LibRec智能推荐
5+阅读 · 2017年6月12日
Top
微信扫码咨询专知VIP会员