Among interpretable machine learning methods, the class of Generalised Additive Neural Networks (GANNs) is referred to as Self-Explaining Neural Networks (SENN) because of the linear dependence on explicit functions of the inputs. In binary classification this shows the precise weight that each input contributes towards the logit. The nomogram is a graphical representation of these weights. We show that functions of individual and pairs of variables can be derived from a functional Analysis of Variance (ANOVA) representation, enabling an efficient feature selection to be carried by application of the logistic Lasso. This process infers the structure of GANNs which otherwise needs to be predefined. As this method is particularly suited for tabular data, it starts by fitting a generic flexible model, in this case a Multi-layer Perceptron (MLP) to which the ANOVA decomposition is applied. This has the further advantage that the resulting GANN can be replicated as a SENN, enabling further refinement of the univariate and bivariate component functions to take place. The component functions are partial responses hence the SENN is a partial response network. The Partial Response Network (PRN) is equally as transparent as a traditional logistic regression model, but capable of non-linear classification with comparable or superior performance to the original MLP. In other words, the PRN is a fully interpretable representation of the MLP, at the level of univariate and bivariate effects. The performance of the PRN is shown to be competitive for benchmark data, against state-of-the-art machine learning methods including GBM, SVM and Random Forests. It is also compared with spline-based Sparse Additive Models (SAM) showing that a semi-parametric representation of the GAM as a neural network can be as effective as the SAM though less constrained by the need to set spline nodes.


翻译:在可解释的机器学习方法中,通用Additive神经网络(GANNs)的等级被称为自我解释神经网络(SENN),因为对输入的清晰功能有线性依赖。在二进制分类中,它显示了每项输入对登录的精确权重。NOM图是这些权重的图形表示。我们显示,个人和一组变量的功能可以从对差异代表的功能分析(ANOVA)中得出,以便通过应用后勤拉索(Lasso)来进行高效的特征选择。这个过程推断出GANNs的结构,否则需要预先定义。由于这个方法特别适合表格数据,因此它从安装一个通用的灵活模型开始,在此情况下,每个输入一个多层 Perceptron(ML),使用ANOVA解析法的图形。这进一步的好处是,由此产生的GNNN的功能可以被复制为不基于 SENN的、不具有竞争力的功能选择性能,因此SEN的半端效果反应,而SPRS的原始反应网络则显示一个不具有可比较性的流动的MRal-RODR 。 网络作为其他的原始的模型, 也显示另一个的S-Ralalalalalalalalalal 。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
54+阅读 · 2020年11月3日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Deep Learning & Neural Network 免费学习资源【译】
乐享数据DataScientists
5+阅读 · 2017年8月20日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年8月15日
CoCoNet: A Collaborative Convolutional Network
Arxiv
6+阅读 · 2019年1月28日
Arxiv
3+阅读 · 2018年8月17日
Arxiv
4+阅读 · 2018年2月19日
Arxiv
5+阅读 · 2017年11月30日
VIP会员
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Deep Learning & Neural Network 免费学习资源【译】
乐享数据DataScientists
5+阅读 · 2017年8月20日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员