Shape correspondence from 3D deformation learning has attracted appealing academy interests recently. Nevertheless, current deep learning based methods require the supervision of dense annotations to learn per-point translations, which severely overparameterize the deformation process. Moreover, they fail to capture local geometric details of original shape via global feature embedding. To address these challenges, we develop a new Unsupervised Dense Deformation Embedding Network (i.e., UD^2E-Net), which learns to predict deformations between non-rigid shapes from dense local features. Since it is non-trivial to match deformation-variant local features for deformation prediction, we develop an Extrinsic-Intrinsic Autoencoder to frst encode extrinsic geometric features from source into intrinsic coordinates in a shared canonical shape, with which the decoder then synthesizes corresponding target features. Moreover, a bounded maximum mean discrepancy loss is developed to mitigate the distribution divergence between the synthesized and original features. To learn natural deformation without dense supervision, we introduce a coarse parameterized deformation graph, for which a novel trace and propagation algorithm is proposed to improve both the quality and effciency of the deformation. Our UD^2E-Net outperforms state-of-the-art unsupervised methods by 24% on Faust Inter challenge and even supervised methods by 13% on Faust Intra challenge.
翻译:3D 变形 学习 3D 变形 的成形对应正文最近吸引了学院的利益。 然而,目前深层次的学习方法要求对密集的注释进行监管,以学习每点翻译,而这会使变形过程严重超度。此外,它们未能通过全球特征嵌入来捕捉原始形状的本地几何细节。为了应对这些挑战,我们开发了一个新的不受监督的变形嵌入网络(即UD%2E-Net),它学会预测非硬化形状从稠密的本地特征之间变形。然而,目前的深层次的学习基础方法需要对浓密的注释进行监管,以匹配变形预测的当地特征。我们开发了一个Exprins- Intrinsic Autencoder 来通过全球特征嵌入,将原始的变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形变形