Existing deep methods produce highly accurate 3D reconstructions in stereo and multiview stereo settings, i.e., when cameras are both internally and externally calibrated. Nevertheless, the challenge of simultaneous recovery of camera poses and 3D scene structure in multiview settings with deep networks is still outstanding. Inspired by projective factorization for Structure from Motion (SFM) and by deep matrix completion techniques, we propose a neural network architecture that, given a set of point tracks in multiple images of a static scene, recovers both the camera parameters and a (sparse) scene structure by minimizing an unsupervised reprojection loss. Our network architecture is designed to respect the structure of the problem: the sought output is equivariant to permutations of both cameras and scene points. Notably, our method does not require initialization of camera parameters or 3D point locations. We test our architecture in two setups: (1) single scene reconstruction and (2) learning from multiple scenes. Our experiments, conducted on a variety of datasets in both internally calibrated and uncalibrated settings, indicate that our method accurately recovers pose and structure, on par with classical state of the art methods. Additionally, we show that a pre-trained network can be used to reconstruct novel scenes using inexpensive fine-tuning with no loss of accuracy.


翻译:现有深层方法在立体和多视图立体设置中产生高度准确的立体重建3D,即当相机在内部和外部同时校准时,尽管如此,同时在具有深网络的多视图设置中同时恢复摄像头和立体场结构的挑战仍然有待解决。受结构动力(SFM)和深层矩阵完成技术的预测因素因素的启发,我们提议了一个神经网络结构,在静态场景的多张图像中考虑到一组点轨迹,通过尽可能减少未经监督的再预测损失,恢复相机参数和(粗略)场景结构。我们的网络结构旨在尊重问题的结构:所寻求的输出对摄像头和场景点的变异性,特别是我们的方法不需要对摄像参数或3D点点位置进行初始化。我们用两种设置来测试我们的建筑:(1) 单一场景重建,(2) 从多个场景中学习。我们在内部校准和未校准的场景环境的各种数据集上进行的实验,表明我们的方法准确恢复了结构和结构,与传统的艺术网络的精确性调整方法相比,我们无法用新的成本调整。

0
下载
关闭预览

相关内容

【UAI2021教程】贝叶斯最优学习,65页ppt
专知会员服务
64+阅读 · 2021年8月7日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
最新《深度卷积神经网络理论》报告,35页ppt
专知会员服务
45+阅读 · 2020年11月30日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【泡泡一分钟】SfM-Net:从视频中学习结构和运动
泡泡机器人SLAM
9+阅读 · 2018年5月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
8+阅读 · 2021年2月19日
Learning to See Through Obstructions
Arxiv
7+阅读 · 2020年4月2日
Arxiv
3+阅读 · 2020年2月5日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
5+阅读 · 2018年12月18日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【泡泡一分钟】SfM-Net:从视频中学习结构和运动
泡泡机器人SLAM
9+阅读 · 2018年5月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员