We consider the problem of detecting signals in the rank-one signal-plus-noise data matrix models that generalize the spiked Wishart matrices. We show that the principal component analysis can be improved by pre-transforming the matrix entries if the noise is non-Gaussian. As an intermediate step, we prove a sharp phase transition of the largest eigenvalues of spiked rectangular matrices, which extends the Baik-Ben Arous-P\'ech\'e (BBP) transition. We also propose a hypothesis test to detect the presence of signal with low computational complexity, based on the linear spectral statistics, which minimizes the sum of the Type-I and Type-II errors when the noise is Gaussian.
翻译:我们考虑的是普通化奇观光谱仪表的一级信号加噪音数据矩阵模型中检测信号的问题。我们表明,如果噪音不是古赛安语,主要组成部分分析可以通过预先变换矩阵条目来改进。作为中间步骤,我们证明,悬浮矩形矩阵的最大电子元值是一个急剧的转变阶段,它扩展了Baik-Ben Arous-P\'ech\e(BBP)的过渡。我们还提议了一个假设测试,以根据线性光谱统计来检测低计算复杂性的信号的存在,在噪音为高斯语时,将类型一和类型二误差的总和最小化。