Moving beyond testing on in-distribution data works on Out-of-Distribution (OOD) detection have recently increased in popularity. A recent attempt to categorize OOD data introduces the concept of near and far OOD detection. Specifically, prior works define characteristics of OOD data in terms of detection difficulty. We propose to characterize the spectrum of OOD data using two types of distribution shifts: covariate shift and concept shift, where covariate shift corresponds to change in style, e.g., noise, and concept shift indicates a change in semantics. This characterization reveals that sensitivity to each type of shift is important to the detection and confidence calibration of OOD data. Consequently, we investigate score functions that capture sensitivity to each type of dataset shift and methods that improve them. To this end, we theoretically derive two score functions for OOD detection, the covariate shift score and concept shift score, based on the decomposition of KL-divergence for both scores, and propose a geometrically-inspired method (Geometric ODIN) to improve OOD detection under both shifts with only in-distribution data. Additionally, the proposed method naturally leads to an expressive post-hoc calibration function which yields state-of-the-art calibration performance on both in-distribution and out-of-distribution data. We are the first to propose a method that works well across both OOD detection and calibration and under different types of shifts. Specifically, we improve the previous state-of-the-art OOD detection by relatively 7% AUROC on CIFAR100 vs. SVHN and achieve the best calibration performance of 0.084 Expected Calibration Error on the corrupted CIFAR100C dataset. View project page at https://sites.google.com/view/geometric-decomposition.


翻译:最近试图将OOOD数据分类为近距离和远距离OOOD检测的概念。具体地说,先前的工程用检测难度来界定OOD数据的特性。我们提议使用两种分布变化类型来描述OOD数据的频谱:变换和概念转换,这种变换与风格变化相对应,例如噪音和概念转变,这表明语义变化的变化。这种定性表明,对每类转移的敏感性对于OOOD数据的检测和信心校准十分重要。因此,我们调查的分数功能能够捕捉到对每类数据集变化的敏感性以及改进数据的方法。为此,我们从理论上得出OOOD检测、变换值变换和概念转变分数的分数,根据KL-可变变调的分数的分数与风格变化相对对应,并提议一种对数值变异的计算方法(OODIN),即对OOOOOD数据的检测和信任值校正的相对变换,然后是Sral droal 的计算方法,然后自然地得出Oral-ral dal deal dalation laction laction laction laction laction laction lade lade lade lade lade lade lade lade dal laut laut laut laut laut laut d d d d d d laut la la la la la la la la la la la la la la la la laut lad laut laut la la lad la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la lad d la la la la la la la la la la la la la la la la

0
下载
关闭预览

相关内容

【Cell】神经算法推理,Neural algorithmic reasoning
专知会员服务
29+阅读 · 2021年7月16日
专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
Arxiv
38+阅读 · 2021年8月31日
Arxiv
4+阅读 · 2020年3月19日
VIP会员
相关VIP内容
【Cell】神经算法推理,Neural algorithmic reasoning
专知会员服务
29+阅读 · 2021年7月16日
专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员