We present an algorithm for re-rendering a person from a single image under arbitrary poses. Existing methods often have difficulties in hallucinating occluded contents photo-realistically while preserving the identity and fine details in the source image. We first learn to inpaint the correspondence field between the body surface texture and the source image with a human body symmetry prior. The inpainted correspondence field allows us to transfer/warp local features extracted from the source to the target view even under large pose changes. Directly mapping the warped local features to an RGB image using a simple CNN decoder often leads to visible artifacts. Thus, we extend the StyleGAN generator so that it takes pose as input (for controlling poses) and introduces a spatially varying modulation for the latent space using the warped local features (for controlling appearances). We show that our method compares favorably against the state-of-the-art algorithms in both quantitative evaluation and visual comparison.


翻译:现有方法往往难以在保存源图像的身份和细细细节的同时,对隐蔽内容产生真实的幻觉。 我们首先学会用人体对称性来对身体表面纹理和源图像之间的对应领域进行油漆。 被涂漆的通信领域使我们能够将从源中提取的本地特征(即使是在较大范围内)转移到目标视图中。 直接用简单的CNN解码器将扭曲的本地特征映射成 RGB 图像,常常导致可见的文物。 因此,我们扩展StyleGAN 生成器,以便它作为输入(控制外形),并使用扭曲的本地特征(控制外观)对潜在空间进行空间进行空间不同的空间调整。 我们显示,在定量评估和视觉比较中,我们的方法优于最先进的算法。

0
下载
关闭预览

相关内容

最新《生成式对抗网络》简介,25页ppt
专知会员服务
173+阅读 · 2020年6月28日
997篇-历史最全生成对抗网络(GAN)论文串烧
深度学习与NLP
16+阅读 · 2018年6月26日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
Arxiv
8+阅读 · 2018年5月1日
VIP会员
相关VIP内容
最新《生成式对抗网络》简介,25页ppt
专知会员服务
173+阅读 · 2020年6月28日
Top
微信扫码咨询专知VIP会员