Three-dimensional objects are commonly represented as 3D boxes in a point-cloud. This representation mimics the well-studied image-based 2D bounding-box detection but comes with additional challenges. Objects in a 3D world do not follow any particular orientation, and box-based detectors have difficulties enumerating all orientations or fitting an axis-aligned bounding box to rotated objects. In this paper, we instead propose to represent, detect, and track 3D objects as points. Our framework, CenterPoint, first detects centers of objects using a keypoint detector and regresses to other attributes, including 3D size, 3D orientation, and velocity. In a second stage, it refines these estimates using additional point features on the object. In CenterPoint, 3D object tracking simplifies to greedy closest-point matching. The resulting detection and tracking algorithm is simple, efficient, and effective. CenterPoint achieved state-of-the-art performance on the nuScenes benchmark for both 3D detection and tracking, with 65.5 NDS and 63.8 AMOTA for a single model. On the Waymo Open Dataset, CenterPoint outperforms all previous single model method by a large margin and ranks first among all Lidar-only submissions. The code and pretrained models are available at https://github.com/tianweiy/CenterPoint.
翻译:三维对象通常在点球中以 3D 框表示为 3D 框。 此表示模仿了基于 3D 的基于 3D 的基于图像的 2D 框检测, 但也带来了额外的挑战 。 3D 世界上的物体并不遵循任何特定方向, 以 框为基础的探测器很难列出所有方向或安装一个轴对齐的捆绑框以旋转对象。 在本文中, 我们提议将3D 对象作为点代表、 检测和跟踪。 我们的框架, 中心点, 首次检测对象中心, 使用关键点检测器和回归到其他属性, 包括 3D 大小、 3D 方向和 其它属性。 在第二阶段, 它利用对象上的额外点特征来完善这些估计。 在中心点, 3D 对象跟踪跟踪到贪婪的最接近点匹配匹配。 由此产生的检测和跟踪算法简单、 有效。 中心点在 3D 检测和跟踪的 NSpeenes 基准上取得了最先进的业绩, 包括65.5 NDS 和 63.8 AMOTA 。 在 模型中的第一个模型上,, 以 开路模式 和前端 以所有 以前端 的 的 。