Despite their impressive performance in a wide range of NLP tasks, Large Language Models (LLMs) have been reported to encode worrying-levels of gender bias. Prior work has proposed debiasing methods that require human labelled examples, data augmentation and fine-tuning of the LLMs, which are computationally costly. Moreover, one might not even have access to the internal parameters for performing debiasing such as in the case of commercially available LLMs such as GPT-4. To address this challenge we propose bias suppression, a novel alternative to debiasing that does not require access to model parameters. We show that text-based preambles, generated from manually designed templates covering counterfactual statements, can accurately suppress gender biases in LLMs. Moreover, we find that descriptive sentences for occupations can further suppress gender biases. Interestingly, we find that bias suppression has a minimal adverse effect on downstream task performance, while effectively mitigating the gender biases.
翻译:暂无翻译