Latent fingerprint enhancement is an essential pre-processing step for latent fingerprint identification. Most latent fingerprint enhancement methods try to restore corrupted gray ridges/valleys. In this paper, we propose a new method that formulates the latent fingerprint enhancement as a constrained fingerprint generation problem within a generative adversarial network (GAN) framework. We name the proposed network as FingerGAN. It can enforce its generated fingerprint (i.e, enhanced latent fingerprint) indistinguishable from the corresponding ground-truth instance in terms of the fingerprint skeleton map weighted by minutia locations and the orientation field regularized by the FOMFE model. Because minutia is the primary feature for fingerprint recognition and minutia can be retrieved directly from the fingerprint skeleton map, we offer a holistic framework which can perform latent fingerprint enhancement in the context of directly optimizing minutia information. This will help improve latent fingerprint identification performance significantly. Experimental results on two public latent fingerprint databases demonstrate that our method outperforms the state of the arts significantly. The codes will be available for non-commercial purposes from \url{https://github.com/HubYZ/LatentEnhancement}.
翻译:隐性指纹强化是潜在指纹识别的基本前处理步骤。 大部分隐性指纹强化方法都试图恢复腐蚀的灰脊/ valleys。 在本文中, 我们提出一种新的方法, 将潜在的指纹强化作为基因对抗网络( GAN) 框架内的受限制的指纹生成问题。 我们将拟议的网络命名为 FingerGAN 。 它可以强制使用其生成的指纹( 即增强的隐性指纹), 无法与相应的地真真像相区分, 指纹指纹指纹指纹的底片地图由微小片位置和FOMFE模型规范的方向字段加权。 由于微小指纹是指纹识别的主要特征, 并且可以直接从指纹骨架图中检索到微小指纹, 我们提供了一个整体框架, 在直接优化微小信息的背景下进行潜在指纹强化。 这将有助于显著改进潜在指纹识别工作。 两个公共隐性指纹数据库的实验结果表明, 我们的方法明显地超越了艺术状态。 这些代码将提供给非商业用途的代码来自\urlances://github.com/ Hub/Latment.