Deep neural networks (DNNs) demonstrate significant advantages in improving ranking performance in retrieval tasks. Driven by the recent technical developments in optimization and generalization of DNNs, learning a neural ranking model online from its interactions with users becomes possible. However, the required exploration for model learning has to be performed in the entire neural network parameter space, which is prohibitively expensive and limits the application of such online solutions in practice. In this work, we propose an efficient exploration strategy for online interactive neural ranker learning based on the idea of bootstrapping. Our solution employs an ensemble of ranking models trained with perturbed user click feedback. The proposed method eliminates explicit confidence set construction and the associated computational overhead, which enables the online neural rankers' training to be efficiently executed in practice with theoretical guarantees. Extensive comparisons with an array of state-of-the-art OL2R algorithms on two public learning to rank benchmark datasets demonstrate the effectiveness and computational efficiency of our proposed neural OL2R solution.
翻译:深神经网络(DNNs)在提高检索任务的排名表现方面显示出了巨大的优势。在DNNs优化和普及的最新技术发展的推动下,有可能通过与用户的互动,在网上学习神经排名模型;然而,必须在整个神经网络参数空间进行所需的示范学习探索,因为这个空间费用极高,限制了这种在线解决方案的实际应用。在这项工作中,我们提议了一个基于靴子修补理念的在线互动神经排层学习的高效探索战略。我们的解决方案采用了一组经过过敏用户点击反馈培训的排名模型。拟议方法消除了明确的信任制构建和相关计算间接成本,从而使在线神经排层人员的培训能够以理论保证的方式在实际操作中有效进行。在两个公共学习基准数据集排名方面,与一系列最新水平的OL2R算法进行广泛的比较,表明了我们提议的OL2R型神经元解决方案的有效性和计算效率。