This paper introduces the use of evolutionary algorithms for solving differential equations. The solution is obtained by optimizing a deep neural network whose loss function is defined by the residual terms from the differential equations. Recent studies have used stochastic gradient descent (SGD) variants to train these physics-informed neural networks (PINNs), but these methods can struggle to find accurate solutions due to optimization challenges. When solving differential equations, it is important to find the globally optimum parameters of the network, rather than just finding a solution that works well during training. SGD only searches along a single gradient direction, so it may not be the best approach for training PINNs with their accompanying complex optimization landscapes. In contrast, evolutionary algorithms perform a parallel exploration of different solutions in order to avoid getting stuck in local optima and can potentially find more accurate solutions. However, evolutionary algorithms can be slow, which can make them difficult to use in practice. To address this, we provide a set of five benchmark problems with associated performance metrics and baseline results to support the development of evolutionary algorithms for enhanced PINN training. As a baseline, we evaluate the performance and speed of using the widely adopted Covariance Matrix Adaptation Evolution Strategy (CMA-ES) for solving PINNs. We provide the loss and training time for CMA-ES run on TensorFlow, and CMA-ES and SGD run on JAX (with GPU acceleration) for the five benchmark problems. Our results show that JAX-accelerated evolutionary algorithms, particularly CMA-ES, can be a useful approach for solving differential equations. We hope that our work will support the exploration and development of alternative optimization algorithms for the complex task of optimizing PINNs.
翻译:本文介绍使用进化算法来解决差异方程式。 解决方案是通过优化一个深度神经网络获得的, 其损失功能由差异方程式的剩余条件来界定。 最近的研究使用了随机梯度梯度下降变量来训练这些物理知情神经网络( PINNs ), 但是这些方法会因优化挑战而难以找到准确的解决办法。 当解决差异方程式时, 找到全球最佳的网络参数非常重要, 而不仅仅是找到一个在培训期间行之有效的解决方案。 SGD 只能沿着一个单一的梯度方向搜索, 这样它可能不是用其复杂的优化场景来训练 PINNs 的最佳方法。 相反, 进化算法对不同的解决方案进行平行的探索, 以避免被困在本地的选取中, 可能找到更准确的解决方案。 然而, 进化算法可能很慢, 这可能使它们难以在实践中使用。 为了解决这个问题, 我们提供了一套与相关的绩效衡量标准和基线有关的5个基准问题, 支持发展进化算法, 用于强化 JINN 培训。 作为基准, 我们用一个基准, 我们评估进化法的运行SAS 快速变法的运行 CSA 的进度计算结果,, 我们的C- SLLA 测试的运行时间 和速度 运行 CSA, 运行 CSMA 的周期的周期的进度变法, 运行的进度变法 运行的进度变算法, 将提供我们的周期 运行的周期的周期的周期的周期的周期的周期的周期变法 。