In building practical applications of evolutionary computation (EC), two optimizations are essential. First, the parameters of the search method need to be tuned to the domain in order to balance exploration and exploitation effectively. Second, the search method needs to be distributed to take advantage of parallel computing resources. This paper presents BLADE (BLAnket Distributed Evolution) as an approach to achieving both goals simultaneously. BLADE uses blankets (i.e., masks on the genetic representation) to tune the evolutionary operators during the search, and implements the search through hub-and-spoke distribution. In the paper, (1) the blanket method is formalized for the (1 + 1)EA case as a Markov chain process. Its effectiveness is then demonstrated by analyzing dominant and subdominant eigenvalues of stochastic matrices, suggesting a generalizable theory; (2) the fitness-level theory is used to analyze the distribution method; and (3) these insights are verified experimentally on three benchmark problems, showing that both blankets and distribution lead to accelerated evolution. Moreover, a surprising synergy emerges between them: When combined with distribution, the blanket approach achieves more than $n$-fold speedup with $n$ clients in some cases. The work thus highlights the importance and potential of optimizing evolutionary computation in practical applications.
翻译:在建立进化计算的实际应用(EC)时,必须进行两种优化。首先,搜索方法的参数需要调整到领域,以便有效地平衡勘探和开发。第二,搜索方法需要分布,以便利用平行计算资源。本文同时提出BLADE(BLAnket 分布进化),作为实现这两个目标的一种方法。BLADE使用毯子(即基因代表面遮罩)来调节进化操作者在搜索过程中,并通过中标分布进行搜索。在文件中,(1)对于作为Markov链过程的1+1EA案件,总体方法已经正式化。然后,通过分析显出其有效性,分析主值和亚主值的Stocharist矩阵,提出可概括的理论;(2) 健康水平理论用于分析分配方法;(3) 这些洞察力通过实验性检验三个基准问题,表明毯子和分配导致加速进化。此外,两者之间出现了一种惊人的协同效应:在与分布相结合的情况下,总体方法在某种分配过程中,总法方法在以美元为单位的情况下,实现了以美元为单位的进化价值,从而以美元为最高速度计算。