As one of the main solutions to the information overload problem, recommender systems are widely used in daily life. In the recent emerging micro-video recommendation scenario, micro-videos contain rich multimedia information, involving text, image, video and other multimodal data, and these rich multimodal information conceals users' deep interest in the items. Most of the current recommendation algorithms based on multimodal data use multimodal information to expand the information on the item side, but ignore the different preferences of users for different modal information, and lack the fine-grained mining of the internal connection of multimodal information. To investigate the problems in the micro-video recommendr system mentioned above, we design a hybrid recommendation model based on multimodal information, introduces multimodal information and user-side auxiliary information in the network structure, fully explores the deep interest of users, measures the importance of each dimension of user and item feature representation in the scoring prediction task, makes the application of graph neural network in the recommendation system is improved by using an attention mechanism to fuse the multi-layer state output information, allowing the shallow structural features provided by the intermediate layer to better participate in the prediction task. The recommendation accuracy is improved compared with the traditional recommendation algorithm on different data sets, and the feasibility and effectiveness of our model is verified.
翻译:作为信息超载问题的主要解决办法之一,建议者系统在日常生活中广泛使用。在最近出现的微型视频建议设想中,微型视频包含丰富的多媒体信息,涉及文字、图像、视频和其他多式联运数据,这些丰富的多式联运信息掩盖了用户对这些项目的浓厚兴趣。基于多式联运数据的现有建议算法大多使用多式联运信息来扩大项目侧的信息,但忽视用户对不同模式信息的不同偏好,缺乏对多式联运信息内部连接的精细挖掘。为了调查上述微型视频建议者系统中的问题,我们设计了一个基于多式联运信息的综合建议模式,在网络结构中引入多式联运信息和用户方辅助信息,充分探索用户的浓厚兴趣,衡量用户和项目特征在评分预测任务中每个层面的重要性,通过利用关注机制将多层次国家产出信息连接起来,使中间层提供的浅层结构特征能够更好地参与预测任务,改进了建议准确性,与我们关于不同数据集的传统有效性建议相比,改进了我们的建议的准确性,并核查了不同数据集的可行性和有效性。