A probabilistic database with attribute-level uncertainty consists of relations where cells of some attributes may hold probability distributions rather than deterministic content. Such databases arise, implicitly or explicitly, in the context of noisy operations such as missing data imputation, where we automatically fill in missing values, column prediction, where we predict unknown attributes, and database cleaning (and repairing), where we replace the original values due to detected errors or violation of integrity constraints. We study the computational complexity of problems that regard the selection of cell values in the presence of integrity constraints. More precisely, we focus on functional dependencies and study three problems: (1) deciding whether the constraints can be satisfied by any choice of values, (2) finding a most probable such choice, and (3) calculating the probability of satisfying the constraints. The data complexity of these problems is determined by the combination of the set of functional dependencies and the collection of uncertain attributes. We give full classifications into tractable and intractable complexities for several classes of constraints, including a single dependency, matching constraints, and unary functional dependencies.
翻译:具有属性级不确定性的概率数据库包含某些属性的细胞可能具有概率分布而不是确定性内容的关系,在诸如缺失数据估算等噪音操作中,这些数据库是隐含或明确产生的,在这种噪音操作中,我们自动填写缺失的值、柱子预测,我们预测未知属性,以及数据库清理(和维修),我们在此过程中由于发现错误或违反完整性限制而取代原始值。我们研究在存在完整性限制的情况下选择单元格值的问题的计算复杂性。更确切地说,我们侧重于功能依赖和研究三个问题:(1) 决定是否可以通过选择任何价值来满足制约,(2) 找到最有可能的这种选择,(3) 计算满足制约的概率。这些问题的数据复杂性是由一套功能依赖和收集不确定属性的组合决定的。我们充分分类了若干类别制约的可移植性和棘手性复杂性,包括单一依赖性、匹配性制约和单项功能依赖性依赖性。