Decoding a Reed-Solomon code can be modeled by a bilinear system which can be solved by Gr\"obner basis techniques. We will show that in this particular case, these techniques are much more efficient than for generic bilinear systems with the same number of unknowns and equations (where these techniques have exponential complexity). Here we show that they are able to solve the problem in polynomial time up to the Sudan radius. Moreover, beyond this radius these techniques recover automatically polynomial identities that are at the heart of improvements of the power decoding approach for reaching the Johnson decoding radius. They also allow to derive new polynomial identities that can be used to derive new algebraic decoding algorithms for Reed-Solomon codes. We provide numerical evidence that this sometimes allows to correct efficiently slightly more errors than the Johnson radius.
翻译:解码 Reed- Solomon 代码可以通过双线系统模拟, 这种系统可以通过 Gr\“ obner ” 基础技术来解决。 我们将显示, 在特定情况下, 这些技术比具有相同数量未知和方程( 这些技术具有指数复杂性)的通用双线系统的效率要高得多。 这里我们显示, 它们能够解决苏丹半径至苏丹半径的多元时段的问题。 此外, 除了这个半径之外, 这些技术还自动恢复了自动的多线特性, 这些特性是改进能力解码方法以达到 Johnson 解码半径的核心。 它们还可以产生新的多线特性, 用来为Red- Solomon 代码生成新的代数解码算算法。 我们提供数字证据, 表明有时这可以有效地纠正比 Johnson 半径略多一点的错误。