State Machine Replication (SMR) protocols form the backbone of many distributed systems. Enterprises and startups increasingly build their distributed systems on the cloud due to its many advantages, such as scalability and cost-effectiveness. One of the first technical questions companies face when building a system on the cloud is which programming language to use. Among many factors that go into this decision is whether to use a language with garbage collection (GC), such as Java or Go, or a language with manual memory management, such as C++ or Rust. Today, companies predominantly prefer languages with GC, like Go, Kotlin, or even Python, due to ease of development; however, there is no free lunch: GC costs resources (memory and CPU) and performance (long tail latencies due to GC pauses). While there have been anecdotal reports of reduced cloud cost and improved tail latencies when switching from a language with GC to a language with manual memory management, so far, there has not been a systematic study of the GC overhead of running an SMR-based cloud system. This paper studies the overhead of running an SMR-based cloud system written in a language with GC. To this end, we design from scratch a canonical SMR system -- a MultiPaxos-based replicated in-memory key-value store -- and we implement it in C++, Java, Rust, and Go. We compare the performance and resource usage of these implementations when running on the cloud under different workloads and resource constraints and report our results. Our findings have implications for the design of cloud systems.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年6月27日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员