We consider shrinkage estimation of higher order Hilbert space valued Bochner integrals in a non-parametric setting. We propose estimators that shrink the $U$-statistic estimator of the Bochner integral towards a pre-specified target element in the Hilbert space. Depending on the degeneracy of the kernel of the $U$-statistic, we construct consistent shrinkage estimators with fast rates of convergence, and develop oracle inequalities comparing the risks of the the $U$-statistic estimator and its shrinkage version. Surprisingly, we show that the shrinkage estimator designed by assuming complete degeneracy of the kernel of the $U$-statistic is a consistent estimator even when the kernel is not complete degenerate. This work subsumes and improves upon Krikamol et al., 2016, JMLR and Zhou et al., 2019, JMVA, which only handle mean element and covariance operator estimation in a reproducing kernel Hilbert space. We also specialize our results to normal mean estimation and show that for $d\ge 3$, the proposed estimator strictly improves upon the sample mean in terms of the mean squared error.
翻译:我们考虑在非参数环境下对高顺序Hilbert空间价值Bochner 集成物进行压缩估计; 我们建议估算将Bochner集成物的美元统计估算器压缩到Hilbert空间的预定目标元素上; 取决于美元统计的内核的退化性,我们建造了具有快速趋同率的一致的一致缩缩估算器, 并发展或缩小了不平等, 比较了美元统计估量器及其缩放版本的风险。 令人惊讶的是, 我们提出将美元统计集成物的精度缩放至Hilbert空间中一个预指定的目标元素。 取决于美元统计集质的内核的退化性, 我们建造了一致的缩放量估计器, 并改进了Krikamol等人、2016年、JMMLR和Zhou等人2019年的测算器, 后者只处理中值元素和变量操作者估算。 令人惊讶的是, 我们还专门设计了我们假设美元统计元核心部分完全退化的标值, 。