We introduce the saddlepoint approximation-based conditional randomization test (spaCRT), a novel conditional independence test that effectively balances statistical accuracy and computational efficiency, inspired by applications to single-cell CRISPR screens. Resampling-based methods like the distilled conditional randomization test (dCRT) offer statistical precision but at a high computational cost. The spaCRT leverages a saddlepoint approximation to the resampling distribution of the dCRT test statistic, achieving very similar finite-sample statistical performance with significantly reduced computational demands. We prove that the spaCRT p-value approximates the dCRT p-value with vanishing relative error, and that these two tests are asymptotically equivalent. Through extensive simulations and real data analysis, we demonstrate that the spaCRT controls Type-I error and maintains high power, outperforming other asymptotic and resampling-based tests. Our method is particularly well-suited for large-scale single-cell CRISPR screen analyses, facilitating the efficient and accurate assessment of perturbation-gene associations.
翻译:暂无翻译