Given a complete simple topological graph $G$, a $k$-face generated by $G$ is the open bounded region enclosed by the edges of a non-self-intersecting $k$-cycle in $G$. Interestingly, there are complete simple topological graphs with the property that every odd face it generates contains the origin. In this paper, we show that every complete $n$-vertex simple topological graph generates at least $\Omega(n^{1/3})$ pairwise disjoint 4-faces. As an immediate corollary, every complete simple topological graph on $n$ vertices drawn in the unit square generates a 4-face with area at most $O(n^{-1/3})$. Finally, we investigate a $\mathbb Z_2$ variant of Heilbronn triangle problem.
翻译:鉴于一个完整的简单表情图表$G$,由G$产生的一K美元面板是被一个非自解的美元周期边缘以$G$封闭的开放区域。有趣的是,有完整的简单表情图表,每个奇异的面孔所生成的属性都有其来源。在本文中,我们显示,每个完整的一美元垂直表面图至少生成了$\Omega(n ⁇ 1/3})美元对称的四面板脱节。作为直接的必然结果,在单位广场上绘制的每张关于美元圆圆圆圆的完整表情图表都产生一个4面图,面积最多为$O(n ⁇ -1/3})。最后,我们调查海布罗宁三角形问题的一个$\mathb%2美元变量。