Close-up facial images captured at close distances often suffer from perspective distortion, resulting in exaggerated facial features and unnatural/unattractive appearances. We propose a simple yet effective method for correcting perspective distortions in a single close-up face. We first perform GAN inversion using a perspective-distorted input facial image by jointly optimizing the camera intrinsic/extrinsic parameters and face latent code. To address the ambiguity of joint optimization, we develop focal length reparametrization, optimization scheduling, and geometric regularization. Re-rendering the portrait at a proper focal length and camera distance effectively corrects these distortions and produces more natural-looking results. Our experiments show that our method compares favorably against previous approaches regarding visual quality. We showcase numerous examples validating the applicability of our method on portrait photos in the wild.
翻译:在近距离拍摄的近距离近距离面部图像往往受到观点扭曲的影响,导致面部特征夸大和不自然/不吸引人的外表。我们提出了一个简单而有效的方法,用一个近距离面部纠正观点扭曲现象。我们首先使用视觉扭曲的输入面部图像进行GAN倒置,共同优化相机内在/外部参数,并面对潜在代码。为了解决联合优化的模糊性,我们开发了焦点长度重新整齐、优化时间安排和几何规范化。在适当的焦距和相机距离重塑肖像,有效地纠正了这些扭曲现象,并产生了更自然的结果。我们的实验表明,我们的方法与以往的视觉质量方法相比是优异的。我们展示了许多实例,证明我们在野外肖像照片上采用的方法是可行的。