Although the statistical literature extensively covers continuous-valued time series processes and their parametric, non-parametric and semiparametric estimation, the literature on count data time series is considerably less advanced. Among the count data time series models, the integer-valued autoregressive (INAR) model is arguably the most popular one finding applications in a wide variety of fields such as medical sciences, environmentology and economics. While many contributions have been made during the last decades, the majority of the literature focuses on parametric INAR models and estimation techniques. Our emphasis is on the complex but efficient and non-restrictive semiparametric estimation of INAR models. The appeal of this approach lies in the absence of a commitment to a parametric family of innovation distributions. In this paper, we describe the need and the features of our R package spINAR which combines semiparametric simulation, estimation and bootstrapping of INAR models also covering its parametric versions.
翻译:暂无翻译