We consider the task of interactive communication in the presence of adversarial errors and present tight bounds on the tolerable error-rates in a number of different settings. Most significantly, we explore adaptive interactive communication where the communicating parties decide who should speak next based on the history of the interaction. Braverman and Rao [STOC'11] show that non-adaptively one can code for any constant error rate below 1/4 but not more. They asked whether this bound could be improved using adaptivity. We answer this open question in the affirmative (with a slightly different collection of resources): Our adaptive coding scheme tolerates any error rate below 2/7 and we show that tolerating a higher error rate than 1/3 is impossible. We also show that in the setting of Franklin et al. [CRYPTO'13], where parties share randomness not known to the adversary, adaptivity increases the tolerable error rate from 1/2 to 2/3. For list-decodable interactive communications, where each party outputs a constant size list of possible outcomes, the tight tolerable error rate is 1/2. Our negative results hold even for unbounded communication and computations, whereas for our positive results communication and computations are polynomially bounded. Most prior work considered coding schemes with linear amount of communication, while allowing unbounded computations. We argue that studying tolerable error rates in this relaxed context helps to identify a setting's intrinsic optimal error rate. We set forward a strong working hypothesis which stipulates that for any setting the maximum tolerable error rate is independent of many computational and communication complexity measures. We believe this hypothesis to be a powerful guideline for the design of simple, natural, and efficient coding schemes and for understanding the (im)possibilities of coding for interactive communications.
翻译:我们考虑互动沟通的任务时,存在对抗性错误,对可容忍的错误率提出严格的限制。 最重要的是, 我们探索适应性互动沟通,让沟通方根据互动的历史来决定谁应该下一个发言。 Braverman 和 Rao [STOC'11] 显示, 非调整性的人可以对任何1/4以下的恒定错误率进行编码, 但不会超过1/3。 他们询问, 是否使用适应性来改进这一约束。 我们用肯定性( 资源收集略微不同 ) 回答这个未解决的问题: 我们的适应性编码计划容忍2/7以下的任何错误率, 而我们显示, 将最高错误率维持在1/3以下。 我们还表明, 在富兰克林等人的设置时, [CRYPto'13], 当各方分享对方未知的随机误差率时, 调整性能将可接受性误差率从1/2升至2/3。 对于列表性互动通信, 我们每个缔约方都会提出一个不变的准度错误清单, 严格的误差率率是1/2。 我们的错误率是1/2。 我们的负面的计算结果, 即使在最差的计算中, 我们的计算中, 也保持了最不精确的计算方法在不精确的逻辑的计算, 的计算, 使最精确的循环的计算, 的计算法式的计算, 的计算法式的循环的计算法式的循环的计算, 的计算, 的计算法的计算法的计算法的计算法的计算法的计算法的计算法, 。