The electrocardiogram (ECG) is one of the most commonly used non-invasive, convenient medical monitoring tools that assist in the clinical diagnosis of heart diseases. Recently, deep learning (DL) techniques, particularly self-supervised learning (SSL), have demonstrated great potential in the classification of ECG. SSL pre-training has achieved competitive performance with only a small amount of annotated data after fine-tuning. However, current SSL methods rely on the availability of annotated data and are unable to predict labels not existing in fine-tuning datasets. To address this challenge, we propose Multimodal ECG-Text Self-supervised pre-training (METS), the first work to utilize the auto-generated clinical reports to guide ECG SSL pre-training. We use a trainable ECG encoder and a frozen language model to embed paired ECG and automatically machine-generated clinical reports separately. The SSL aims to maximize the similarity between paired ECG and auto-generated report while minimize the similarity between ECG and other reports. In downstream classification tasks, METS achieves around 10% improvement in performance without using any annotated data via zero-shot classification, compared to other supervised and SSL baselines that rely on annotated data. Furthermore, METS achieves the highest recall and F1 scores on the MIT-BIH dataset, despite MIT-BIH containing different classes of ECG compared to the pre-trained dataset. The extensive experiments have demonstrated the advantages of using ECG-Text multimodal self-supervised learning in terms of generalizability, effectiveness, and efficiency.


翻译:心电图(ECG)是一种便利的非侵入式医学监测工具,用于协助临床诊断心脏疾病。最近,深度学习(DL)技术,尤其是自监督学习(SSL),已经展示出在ECG分类方面具有潜在的应用。SSL预训练在微调后仅使用少量批注数据即可实现竞争力表现。但是,当前的SSL方法依赖于批注数据的可用性,并且无法预测在微调数据集中不存在的标签。为了解决这一挑战,我们提出了多模态ECG-文本自监督预训练(METS),这是第一次利用自动生成的临床报告来指导ECG SSL预训练。我们使用可训练的ECG编码器和冻结的语言模型将匹配的ECG和自动生成的临床报告分别嵌入。SSL旨在最大化配对ECG和自动生成报告之间的相似性,同时最小化ECG和其他报告之间的相似性。在下游分类任务中,METS通过零样本分类实现了大约10%的表现提升,而其他依赖批注数据的监督和SSL基线则没有使用任何批注数据。此外,尽管MIT-BIH包含不同的ECG类别,但METS在MIT-BIH数据集上实现了最高的召回率和F1分数。大量的实验证明了使用ECG-文本多模态自监督学习在通用性,有效性和效率方面的优点。

0
下载
关闭预览

相关内容

专知会员服务
24+阅读 · 2021年8月22日
预训练语言模型fine-tuning近期进展概述
专知会员服务
39+阅读 · 2021年4月9日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
IJCAI 2022 | 使用陈述句进行视觉问答的Prompt Tuning
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月11日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
VIP会员
相关资讯
IJCAI 2022 | 使用陈述句进行视觉问答的Prompt Tuning
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员