This paper discusses our proposal and implementation of Cognac, a domain-specific compilation tool based on LLVM to accelerate cognitive models. Cognitive models explain the process of cognitive function and offer a path to human-like artificial intelligence. However, cognitive modeling is laborious, requiring composition of many types of computational tasks, and suffers from poor performance as it relies on high-level languages like Python. In order to continue enjoying the flexibility of Python while achieving high performance, Cognac uses domain-specific knowledge to compile Python-based cognitive models into LLVM IR, carefully stripping away features like dynamic typing and memory management that add overheads to the actual model. As we show, this permits significantly faster model execution. We also show that the code so generated enables using classical compiler data flow analysis passes to reveal properties about data flow in cognitive models that are useful to cognitive scientists. Cognac is publicly available, is being used by researchers in cognitive science, and has led to patches that are currently being evaluated for integration into mainline LLVM.


翻译:本文讨论我们的提案和实施基于LLVM的域名汇编工具Cognac, 以LLVM为基础, 加速认知模型。 认知模型解释认知功能的过程, 并提供了通往像人类一样的人工智能的途径。 然而, 认知模型是艰巨的, 需要多种计算任务的组成, 并且由于依赖像Python这样的高层次语言, 工作表现不佳。 为了继续享受Python的灵活性, 同时取得高性能, Cognac 利用域名知识将基于Python的认知模型编集成LLLVM IR, 仔细去除动态打字和记忆管理等功能, 从而将间接费用添加到实际模型中。 正如我们所显示的那样, 这可以大大加快模型执行速度。 我们还表明, 生成的代码能够使用古典编译数据流分析通道, 以揭示有助于认知科学家的认知模型中的数据流属性。 Cognac 被公开使用, 研究人员在认知科学中正在使用, 并导致目前正在被评估的补接合为LLVM主线的补。

0
下载
关闭预览

相关内容

Cognition:Cognition:International Journal of Cognitive Science Explanation:认知:国际认知科学杂志。 Publisher:Elsevier。 SIT: http://www.journals.elsevier.com/cognition/
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年12月30日
Arxiv
9+阅读 · 2021年10月5日
Arxiv
5+阅读 · 2018年1月18日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员