We consider one of the most classical problems in multivariate statistics, namely the problem of testing isotropy, or equivalently, the problem of testing uniformity on the unit hypersphere $\mathcal{S}^{p-1}$ of $\mathbb{R}^p$. Rather than restricting to tests that can detect specific types of alternatives only, we consider the broad class of Sobolev tests. While these tests are known to allow for omnibus testing of uniformity, their non-null behavior and consistency rates, unexpectedly, remain largely unexplored. To improve on this, we thoroughly study the local asymptotic powers of Sobolev tests under the most classical alternatives to uniformity, namely, under rotationally symmetric alternatives. We show in particular that the consistency rate of Sobolev tests does not only depend on the coefficients defining these tests but also on the derivatives of the underlying angular function at zero. For any Sobolev test and any rotationally symmetric alternative, we derive the consistency rate of the Sobolev test and determine the corresponding local asymptotic powers. We show that Sobolev tests with non-zero coefficients at odd (respectively, even) ranks only are blind (at any polynomial rate) to alternatives with angular functions whose $k$th-order derivatives at zero vanish for any $k$ odd (respectively, even). Our asymptotic analysis requires investigating the non-standard behavior of random Chebyshev polynomials (for $p=2$) and random Gegenbauer polynomials (for $p\geq 3$) in the vicinity of the uniform distribution on $\mathcal{S}^{p-1}$. Our non-standard asymptotic results are illustrated with Monte Carlo exercises.


翻译:我们考虑的是多变量统计中最古老的问题之一, 即测试是异质的, 或者相当的, 测试单位超模量$\ mathcal{S ⁇ p-1}$\\\\\\\\\\\\\R ⁇ p$。 我们不局限于能够检测特定类型替代品的测试, 我们考虑的是高博列夫测试的广泛类别。 虽然这些测试已知允许总括性测试, 它们的非核行为和一致性率, 出乎意料地, 仍然基本上没有解析 。 为了改进这一点, 我们彻底研究在最经典的统一替代方案下, 也就是在旋转基底值替代方案下, 测试单位超正值2\\\\\\\\\\\\\\\\fn\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
神器Cobalt Strike3.13破解版
黑白之道
12+阅读 · 2019年3月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
9+阅读 · 2021年3月8日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
神器Cobalt Strike3.13破解版
黑白之道
12+阅读 · 2019年3月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员