Due to the COVID-19 pandemic, there is an increasing demand for portable CT machines worldwide in order to diagnose patients in a variety of settings [16]. This has lead to a need for CT image reconstruction algorithms that can produce high-quality images in the case when multiple types of geometry parameters have been perturbed. In this paper, we present an alternating descent algorithm to address this issue, where one step minimizes a regularized linear least squares problem, and the other minimizes a bounded non-linear least-square problem. Additionally, we survey existing methods to accelerate the convergence algorithm and discuss implementation details through the use of MATLAB packages such as IRtools and imfil. Finally, numerical experiments are conducted to show the effectiveness of our algorithm.
翻译:由于COVID-19大流行,全世界对便携式CT机器的需求日益增加,以便在各种环境下诊断病人[16],这导致需要CT图像重建算法,在多类几何参数受到干扰的情况下,这种算法能够产生高质量的图像。在本文中,我们提出一种交替的下降算法来解决这一问题,其中一步可以最大限度地减少正常的线性最小平方问题,另一步可以最大限度地减少非线性最小平方问题。此外,我们调查现有的方法,以加快趋同算法,并通过使用诸如IRtools和IFIFI等MATLAB软件包来讨论执行细节。最后,我们进行了数字实验,以显示我们的算法的有效性。