We propose a method for extracting physics-based biomarkers from a single multiparametric Magnetic Resonance Imaging (mpMRI) scan bearing a glioma tumor. We account for mass effect, the deformation of brain parenchyma due to the growing tumor, which on its own is an important radiographic feature but its automatic quantification remains an open problem. In particular, we calibrate a partial differential equation (PDE) tumor growth model that captures mass effect, parameterized by a single scalar parameter, tumor proliferation, migration, while localizing the tumor initiation site. The single-scan calibration problem is severely ill-posed because the precancerous, healthy, brain anatomy is unknown. To address the ill-posedness, we introduce an ensemble inversion scheme that uses a number of normal subject brain templates as proxies for the healthy precancer subject anatomy. We verify our solver on a synthetic dataset and perform a retrospective analysis on a clinical dataset of 216 glioblastoma (GBM) patients. We analyze the reconstructions using our calibrated biophysical model and demonstrate that our solver provides both global and local quantitative measures of tumor biophysics and mass effect. We further highlight the improved performance in model calibration through the inclusion of mass effect in tumor growth models -- including mass effect in the model leads to 10% increase in average dice coefficients for patients with significant mass effect. We further evaluate our model by introducing novel biophysics-based features and using them for survival analysis. Our preliminary analysis suggests that including such features can improve patient stratification and survival prediction.
翻译:我们建议了一种方法,从具有显微瘤肿瘤的单一多参数磁共振成像(mpMRI)扫描中提取以物理为基础的生物标志,我们提出一种方法,从具有显微瘤肿瘤的单一多参数磁共振成像(mpMRI)扫描中提取以物理为基础的生物标志。我们考虑到质量效应,即由于肿瘤的生长而导致脑神经畸形,而肿瘤本身是一个重要的放射特征,但是其自动量化仍然是一个尚未解决的问题。特别是,我们校准了一个部分差异方程(PDE)肿瘤生长模型,该模型捕捉到质量效应,由单一的星标参数、肿瘤扩散、迁移参数作为参数参数,同时将肿瘤启动点点定位点定位。单扫描质量问题非常糟糕,因为先导、健康、大脑解剖作用未知。为了解决肿瘤问题,我们引入了一个共同的大脑变异性初步分析,我们引入了一些正常的大脑模板,作为健康前癌症肿瘤的代言的代言。我们在合成数据集模型上验证了我们的解析模型,对216个显微细胞(GBM)病人的临床数据集进行追溯分析。我们利用初步的重建,包括了我们生物级模型和定量模型的模型,通过生物校正模型进行质量模型和定量分析,从而通过生物校正的校正的校正的校正的校正的校正的校正结果提供了了我们的大规模的校正结果的校正的校正的校正的校正的校正的校正结果的校正的校正结果。