The increasing popularity of exercises including yoga and Pilates has created a greater demand for professional exercise video datasets in the realm of artificial intelligence. In this study, we developed 3DYoga901, which is organized within a three-level label hierarchy. We have expanded the number of poses from an existing state-of-the-art dataset, increasing it from 82 to 90 poses. Our dataset includes meticulously curated RGB yoga pose videos and 3D skeleton sequences. This dataset was created by a dedicated team of six individuals, including yoga instructors. It stands out as one of the most comprehensive open datasets, featuring the largest collection of RGB videos and 3D skeleton sequences among publicly available resources. This contribution has the potential to significantly advance the field of yoga action recognition and pose assessment. Additionally, we conducted experiments to evaluate the practicality of our proposed dataset. We employed three different model variants for benchmarking purposes.
翻译:暂无翻译