In this work, we propose a non-parametric and robust change detection algorithm to detect multiple change points in time series data under contamination. The contamination model is sufficiently general, in that, the most common model used in the context of change detection -- Huber contamination model -- is a special case. Also, the contamination model is oblivious and arbitrary. The change detection algorithm is designed for the offline setting, where the objective is to detect changes when all data are received. We only make weak moment assumptions on the inliers (uncorrupted data) to handle a large class of distributions. The robust scan statistic in the algorithm is fashioned using mean estimators based on influence functions. We establish the consistency of the estimated change point indexes as the number of samples increases, and provide empirical evidence to support the consistency results.
翻译:在这项工作中,我们建议采用非参数和稳健的变化探测算法,以探测受污染的时间序列数据中的多个变化点。污染模型十分普遍,因为变化探测中使用的最常用模型 -- -- Huber污染模型 -- -- 是一个特殊案例。此外,污染模型是盲目和任意的。变化检测算法是为离线设置的,目的是在收到所有数据后发现变化。我们只是对处理大量分布类别的内线(未破坏的数据)进行微弱的假设。强有力的扫描统计法采用基于影响功能的平均值估计值来构建。我们随着样本数量的增加,我们确定估计变化点指数的一致性,并提供经验证据来支持一致性结果。