The Active Flux scheme is a Finite Volume scheme with additional point values distributed along the cell boundary. It is third order accurate and does not require a Riemann solver: the continuous reconstruction serves as initial data for the evolution of the points values. The intercell flux is then obtained from the evolved values along the cell boundary by quadrature. This paper focuses on the conceptual extension of Active Flux to include source terms, and thus for simplicity assumes the homogeneous part of the equations to be linear. To a large part, the treatment of the source terms is independent of the choice of the homogeneous part of the system. Additionally, only systems are considered which admit characteristics (instead of characteristic cones). This is the case for scalar equations in any number of spatial dimensions and systems in one spatial dimension. Here, we succeed to extend the Active Flux method to include (possibly nonlinear) source terms while maintaining third order accuracy of the method. This requires a novel (approximate) operator for the evolution of point values and a modified update procedure of the cell average. For linear acoustics with gravity, it is shown how to achieve a well-balanced / stationarity preserving numerical method.
翻译:主动通量方案是一个在单元格边界沿线分配额外点值的极量方案。 它是第三顺序准确, 不需要 Riemann 求解器: 连续重建是点值演变的初始数据。 然后, 分子间通量通过二次曲线从单元格边界沿单元格边界的进化值中获取。 本文侧重于主动通量的概念扩展, 以包括源术语, 从而简单化假设方程式的同质部分为线性。 在很大程度上, 源术语的处理独立于系统同质部分的选择。 此外, 仅考虑允许特性的系统( 而不是特性锥体) 。 仅在任何空间尺寸和系统的任何空间尺寸和系统中的等离子方程方程式是这种情况。 在此处, 我们成功地扩展了主动通量法, 以包括( 可能非线性) 源术语, 并同时保持该方法的第三顺序精确度 。 这需要一个新的( 近似) 操作器用于点值的演变和细胞平均的修改更新程序 。 对于有重的线形调音学, 它显示如何实现平衡/ 站面保持数字方法 。