The insertion-deletion codes was motivated to correct the synchronization errors. In this paper we prove several Singleton type upper bounds on the insdel distances of linear insertion-deletion codes, based on the generalized Hamming weights and the formation of minimum Hamming weight codewords. Our bound are stronger than some previous known bounds. Some or our upper bounds are valid for any fixed ordering of coordinate positions. We apply these upper bounds to some binary cyclic codes with any rearrangement of coordinate positions, binary Reed-Muller codes and one algebraic-geometric code from elliptic curves.
翻译:插入删除代码的动机是纠正同步错误。 在本文中, 我们根据普通的 Hamming 重量和最小的 Hamming 重量编码的形成, 证明在线性插入删除代码的离心距离上, 有几个单列吨型的上界。 我们的边界比以前已知的界限要强。 某些或我们的上界对坐标位置的任何固定顺序都有效。 我们将这些上界对一些二进周期代码应用这些上界值, 并重新排列坐标位置、 二进制 Reed- Muller 代码以及一个来自椭圆曲线的代数地理测量代码 。