Algebraic methods for the design of series of maximum distance separable (MDS) linear block and convolutional codes to required specifications and types are presented. Algorithms are given to design codes to required rate and required error-correcting capability and required types. Infinite series of block codes with rate approaching a given rational $R$ with $0<R<1$ and relative distance over length approaching $(1-R)$ are designed. These can be designed over fields of given characteristic $p$ or over fields of prime order and can be specified to be of a particular type such as (i) dual-containing under Euclidean inner product, (ii) dual-containing under Hermitian inner product, (iii) quantum error-correcting, (iv) linear complementary dual (LCD). Convolutional codes to required rate and distance are designed and infinite series of convolutional codes with rate approaching a given rational $R$ and distance over length approaching $2(1-R)$. Properties, including distances, are shown algebraically and algebraic explicit efficient decoding methods are known.


翻译:提出了设计最大距离分离(MDS)线性块和革命代码序列的代谢方法,用于设计符合要求规格和类型的最大距离串列线条和革命代号,用于设计符合要求的费率和所需错误纠正能力及所需类型的代号;设计了无限制的区块代号,其费率接近给定的合理价格和距离,接近0.<R$(1-R美元),长度接近$(1-R美元)的相对距离,这些代号可以设计在给定的特性域上或优值字段上方,并可具体指定为特定类型的代号,如(一)Euclidean内部产品中含有双层,(二)Hermitian内部产品中含有双层,(三)量误校正,(四)线性补充双层,设计了要求费率和距离接近0.R$(1-R美元)和距离接近2美元(1-R美元)的代号。

0
下载
关闭预览

相关内容

专知会员服务
17+阅读 · 2020年9月6日
专知会员服务
60+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
已删除
将门创投
4+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
6+阅读 · 2021年4月13日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
已删除
将门创投
4+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员