People's conduct and reactions are driven by their emotions. Online social media is becoming a great instrument for expressing emotions in written form. Paying attention to the context and the entire sentence help us to detect emotion from texts. However, this perspective inhibits us from noticing some emotional words or phrases in the text, particularly when the words express an emotion implicitly rather than explicitly. On the other hand, focusing only on the words and ignoring the context results in a distorted understanding of the sentence meaning and feeling. In this paper, we propose a framework that analyses text at both the sentence and word levels. We name it CEFER (Context and Emotion embedded Framework for Emotion Recognition). Our four approach facets are to extracting data by considering the entire sentence and each individual word simultaneously, as well as implicit and explicit emotions. The knowledge gained from these data not only mitigates the impact of flaws in the preceding approaches but also it strengthens the feature vector. We evaluate several feature spaces using BERT family and design the CEFER based on them. CEFER combines the emotional vector of each word, including explicit and implicit emotions, with the feature vector of each word based on context. CEFER performs better than the BERT family. The experimental results demonstrate that identifying implicit emotions are more challenging than detecting explicit emotions. CEFER, improves the accuracy of implicit emotion recognition. According to the results, CEFER perform 5% better than the BERT family in recognizing explicit emotions and 3% in implicit.


翻译:人们的行为和反应是由情感驱使的。 在线社交媒体正在成为用书面形式表达情感的伟大工具。 关注上下文和整个句子有助于我们从文本中发现情感。 但是,这种观点使我们无法注意到文本中的某些情感文字或词句, 特别是当文字暗含而不是明确地表达情感时。 另一方面, 仅仅关注文字,忽视背景结果, 从而扭曲了对句子含义和感觉的理解。 在本文中, 我们提议一个框架, 分析句子和字层的文字。 我们命名它为 CEFER(情感内嵌和情感内嵌框架) 。 我们的四种方法是通过同时考虑整个句子和每个单词以及隐含和直露的情感来提取数据。 从这些数据中获取的知识不仅减轻了先前方法中的缺陷的影响,而且加强了特性矢量。 我们利用BERT家庭对几个特征空间进行了评估, 并设计了基于这些内容的CEFER。 CEFER将每个词的情感媒介矢量(包括直言和隐含情感)与每个词的特性矢量矢量, 以CEFER 更清楚地显示C- 更明确地显示CFER 3 而不是直隐含的C- 。 更清楚的CFER, 更清楚地的情感, 更清楚地显示了CFER 而不是精确的情感的C- 改进了对C- 的情感的情感的情感的精确性结果。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Arxiv
20+阅读 · 2020年6月8日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Top
微信扫码咨询专知VIP会员