Number theoretic transform (NTT) is the most efficient method for multiplying two polynomials of high degree with integer coefficients, due to its series of advantages in terms of algorithm and implementation, and is consequently widely-used and particularly fundamental in the practical implementations of lattice-based cryptographic schemes. Especially, recent works have shown that NTT can be utilized in those schemes without NTT-friendly rings, and can outperform other multiplication algorithms. In this paper, we first review the basic concepts of polynomial multiplication, convolution and NTT. Subsequently, we systematically introduce basic radix-2 fast NTT algorithms in an algebraic way via Chinese Remainder Theorem. And then, we elaborate recent advances about the methods to weaken restrictions on parameter conditions of NTT. Furthermore, we systematically introduce how to choose appropriate strategy of NTT algorithms for the various given rings. Later, we introduce the applications of NTT in the lattice-based cryptographic schemes of NIST post-quantum cryptography standardization competition. Finally, we try to present some possible future research directions.
翻译:数字理论变异(NTT)是将两种高度多元变异与整数系数相乘的最有效方法,因为它在算法和实施方面有一系列优势,因此被广泛使用,而且对于实际实施基于拉丁拼格的加密方法尤其具有根本意义。特别是,最近的工作表明,NTT可以在没有NTT友好型环的情况下用于这些计划,并且能够优于其他倍数算法。在本文件中,我们首先审查多语种乘法、混凝土和NTT的基本概念。随后,我们系统地通过中文保留论理论以代数法方式引入基本的Radex-2快速NTT算法。然后,我们阐述了最近关于削弱NTT参数条件限制的方法的进展。此外,我们系统地介绍如何为给定的多个环选择NTT算法的适当战略。后来,我们将NTTT应用于基于拉丁拼法后方格加密学标准化竞争的基于拉丁拼法的加密方法。最后,我们试图提出一些可能的未来研究方向。