Imagine a swarm of terrestrial robots that can explore an environment, and, upon completion of this task, reconfigure into a spherical ball and roll out. This dimensional change alters the dynamics of locomotion and can assist them to maneuver variable terrains. The sphere-plane reconfiguration is equivalent to projecting a spherical shell onto a plane, an operation which is not possible without distortions. Fortunately, soft materials have potential to adapt to this disparity of the Gaussian curvatures. Modular Soft Robots (MSoRos) have promise of achieving dimensional change by exploiting their continuum and deformable nature. We present topology and morphology design of MSoRos capable of reconfiguring between spherical and planar configurations. Our approach is based in geometry, where a platonic solid determines the number of modules required for plane-to-sphere reconfiguration and the radius of the resulting sphere, e.g., four `tetrahedron-based' or six `cube-based' MSoRos are required for spherical reconfiguration. The methodology involves: (1)inverse orthographic projection of a `module-topology curve' onto the circumscribing sphere to generate the spherical topology,(2)azimuthal projection of the spherical topology onto a tangent plane at the center of the module resulting in the planar topology, and (3)adjusting the limb stiffness and curling ability by manipulating the geometry of cavities to realize a physical finite-width, Motor-Tendon Actuated MSoRo. The topology design is shown to be scale invariant, i.e., scaling of base platonic solid is reflected linearly in spherical and planar topologies. The module-topology curve is optimized for the reconfiguration and locomotion ability using a metric that quantifies sphere-to-plane distortion. The geometry of the cavity optimizes for the limb stiffness and curling ability without compromising the actuator's structural integrity.
翻译:想象一下可以探索环境的地面机器人群, 并在完成此项任务时, 将软材料重新配置为球形球体, 并推出。 这种维度变化会改变移动的动态, 并可以帮助他们调整变异的地形。 球形飞机的重新配置相当于将球壳投射到飞机上, 这是不可能做到的操作。 幸运的是, 软材料有可能适应高斯曲线的这种差异。 modual Soft机器人( MSoRos) 有可能通过利用它们的连续和变形性来实现立体变化。 我们展示的是能够改变球形和平面构造的物理和形态设计。 我们的方法以几何为根据, 平面固定固态决定了飞机对球形的重新配置所需的模块数量, 也就是说, 4个“ 梯状” 机型机型机型机型机器人, 或6个“ 立体” 机型机型机型机型机型机体的变形变形机型机型机型机型机型机变变变。 在地型上, 机型机型机型上, 机型机型机型机型机型机型机变变变变的机变的机型机变变的机变的机变的机变的机变的机变的机变的机变的机变机变机变的机变形机变的机变机变的机变的机变机变的机变的机变机变的机法, 。