Models with intractable normalizing functions have numerous applications ranging from network models to image analysis to spatial point processes. Because the normalizing constants are functions of the parameters of interest, standard Markov chain Monte Carlo cannot be used for Bayesian inference for these models. A number of algorithms have been developed for such models. Some have the posterior distribution as the asymptotic distribution. Other "asymptotically inexact" algorithms do not possess this property. There is limited guidance for evaluating approximations based on these algorithms, and hence it is very hard to tune them. We propose two new diagnostics that address these problems for intractable normalizing function models. Our first diagnostic, inspired by the second Bartlett identity, applies in principle to any asymptotically exact or inexact algorithm. We develop an approximate version of this new diagnostic that is applicable to intractable normalizing function problems. Our second diagnostic is a Monte Carlo approximation to a kernel Stein discrepancy-based diagnostic introduced by Gorham and Mackey (2017). We provide theoretical justification for our methods. We apply our diagnostics to several algorithms in the context of challenging simulated and real data examples, including an Ising model, an exponential random graph model, and a Markov point process.


翻译:复杂的正常化功能模型有许多应用,从网络模型到图像分析到空间点进程。由于正常化常数是引人注意的参数的功能,标准 Markov 链链 Monte Carlo 无法用于这些模型的Bayesian 推断。 已经为这些模型开发了一些算法。 有些模型的后端分布是无症状分布。 其它“ 暂时不切实际” 算法并不拥有此属性。 根据这些算法评估近似的指导有限,因此很难调和它们。 我们为难以调和的正常化功能模型提出了两个新的诊断方法。 我们根据第二个巴特利特身份的首次诊断方法,原则上适用于任何无症状精确或不精确的算法。 我们开发了这种新诊断方法的近似版本,适用于难以解决的正常化功能问题。 我们的第二个诊断方法是对Gorham 和 Mackey (2017年) 所引入的内核软调的基于差异的诊断方法的模型进行理论解释。 我们用我们的一些模型来分析方法, 包括具有挑战性的模拟和标记的模型。

0
下载
关闭预览

相关内容

专知会员服务
47+阅读 · 2021年4月24日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月1日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员