Models with intractable normalizing functions have numerous applications ranging from network models to image analysis to spatial point processes. Because the normalizing constants are functions of the parameters of interest, standard Markov chain Monte Carlo cannot be used for Bayesian inference for these models. A number of algorithms have been developed for such models. Some have the posterior distribution as the asymptotic distribution. Other "asymptotically inexact" algorithms do not possess this property. There is limited guidance for evaluating approximations based on these algorithms, and hence it is very hard to tune them. We propose two new diagnostics that address these problems for intractable normalizing function models. Our first diagnostic, inspired by the second Bartlett identity, applies in principle to any asymptotically exact or inexact algorithm. We develop an approximate version of this new diagnostic that is applicable to intractable normalizing function problems. Our second diagnostic is a Monte Carlo approximation to a kernel Stein discrepancy-based diagnostic introduced by Gorham and Mackey (2017). We provide theoretical justification for our methods. We apply our diagnostics to several algorithms in the context of challenging simulated and real data examples, including an Ising model, an exponential random graph model, and a Markov point process.
翻译:复杂的正常化功能模型有许多应用,从网络模型到图像分析到空间点进程。由于正常化常数是引人注意的参数的功能,标准 Markov 链链 Monte Carlo 无法用于这些模型的Bayesian 推断。 已经为这些模型开发了一些算法。 有些模型的后端分布是无症状分布。 其它“ 暂时不切实际” 算法并不拥有此属性。 根据这些算法评估近似的指导有限,因此很难调和它们。 我们为难以调和的正常化功能模型提出了两个新的诊断方法。 我们根据第二个巴特利特身份的首次诊断方法,原则上适用于任何无症状精确或不精确的算法。 我们开发了这种新诊断方法的近似版本,适用于难以解决的正常化功能问题。 我们的第二个诊断方法是对Gorham 和 Mackey (2017年) 所引入的内核软调的基于差异的诊断方法的模型进行理论解释。 我们用我们的一些模型来分析方法, 包括具有挑战性的模拟和标记的模型。