We overcome two major bottlenecks in the study of low rank approximation by assuming the low rank factors themselves are sparse. Specifically, (1) for low rank approximation with spectral norm error, we show how to improve the best known $\mathsf{nnz}(\mathbf A) k / \sqrt{\varepsilon}$ running time to $\mathsf{nnz}(\mathbf A)/\sqrt{\varepsilon}$ running time plus low order terms depending on the sparsity of the low rank factors, and (2) for streaming algorithms for Frobenius norm error, we show how to bypass the known $\Omega(nk/\varepsilon)$ memory lower bound and obtain an $s k (\log n)/ \mathrm{poly}(\varepsilon)$ memory bound, where $s$ is the number of non-zeros of each low rank factor. Although this algorithm is inefficient, as it must be under standard complexity theoretic assumptions, we also present polynomial time algorithms using $\mathrm{poly}(s,k,\log n,\varepsilon^{-1})$ memory that output rank $k$ approximations supported on a $O(sk/\varepsilon)\times O(sk/\varepsilon)$ submatrix. Both the prior $\mathsf{nnz}(\mathbf A) k / \sqrt{\varepsilon}$ running time and the $nk/\varepsilon$ memory for these problems were long-standing barriers; our results give a natural way of overcoming them assuming sparsity of the low rank factors.


翻译:我们通过假设低级别因素本身是稀疏的,从而克服了低级别近似研究中的两大瓶颈。 具体地说, (1) 低级别近近似加上光谱规范错误, 我们展示了如何改进最著名的 $mathsfsf{nnnz} (\\mathbff A) k/\qrt=varepsilon} 美元运行时间到 $mathsf{nz} (\mathbfff) (\\\\\\ sqrt\ varepsilon) 。 美元运行时间加上低等级因素的低等级条件, 。 虽然这种算法效率不高, 因为它必须处于标准的复杂度假设之下, 我们还展示了已知的 $(nk/\\ varepr) 内存( 美元) 的内存范围, 以美元/ 美元前级的内存结果 。 (\\\\\\\\\\\\\\\\\\\\\\\\ marxlxal maxal maxal max maxal 美元 时间, 我们的内存的内存数据。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Transformer文本分类代码
专知会员服务
116+阅读 · 2020年2月3日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
12+阅读 · 2021年3月24日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Transformer文本分类代码
专知会员服务
116+阅读 · 2020年2月3日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员