We overcome two major bottlenecks in the study of low rank approximation by assuming the low rank factors themselves are sparse. Specifically, (1) for low rank approximation with spectral norm error, we show how to improve the best known $\mathsf{nnz}(\mathbf A) k / \sqrt{\varepsilon}$ running time to $\mathsf{nnz}(\mathbf A)/\sqrt{\varepsilon}$ running time plus low order terms depending on the sparsity of the low rank factors, and (2) for streaming algorithms for Frobenius norm error, we show how to bypass the known $\Omega(nk/\varepsilon)$ memory lower bound and obtain an $s k (\log n)/ \mathrm{poly}(\varepsilon)$ memory bound, where $s$ is the number of non-zeros of each low rank factor. Although this algorithm is inefficient, as it must be under standard complexity theoretic assumptions, we also present polynomial time algorithms using $\mathrm{poly}(s,k,\log n,\varepsilon^{-1})$ memory that output rank $k$ approximations supported on a $O(sk/\varepsilon)\times O(sk/\varepsilon)$ submatrix. Both the prior $\mathsf{nnz}(\mathbf A) k / \sqrt{\varepsilon}$ running time and the $nk/\varepsilon$ memory for these problems were long-standing barriers; our results give a natural way of overcoming them assuming sparsity of the low rank factors.
翻译:我们通过假设低级别因素本身是稀疏的,从而克服了低级别近似研究中的两大瓶颈。 具体地说, (1) 低级别近近似加上光谱规范错误, 我们展示了如何改进最著名的 $mathsfsf{nnnz} (\\mathbff A) k/\qrt=varepsilon} 美元运行时间到 $mathsf{nz} (\mathbfff) (\\\\\\ sqrt\ varepsilon) 。 美元运行时间加上低等级因素的低等级条件, 。 虽然这种算法效率不高, 因为它必须处于标准的复杂度假设之下, 我们还展示了已知的 $(nk/\\ varepr) 内存( 美元) 的内存范围, 以美元/ 美元前级的内存结果 。 (\\\\\\\\\\\\\\\\\\\\\\\\ marxlxal maxal maxal max maxal 美元 时间, 我们的内存的内存数据。