This paper studies the problem of safe and optimal continuum deformation of a large-scale multi-agent system (MAS). We present a novel approach for MAS continuum deformation coordination that aims to achieve safe and efficient agent movement using a leader-follower multi-layer hierarchical optimization framework with a single input layer, multiple hidden layers, and a single output layer. The input layer receives the reference (material) positions of the primary leaders, the hidden layers compute the desired positions of the interior leader agents and followers, and the output layer computes the nominal position of the MAS configuration. By introducing a lower bound on the major principles of the strain field of the MAS deformation, we obtain linear inequality safety constraints and ensure inter-agent collision avoidance. The continuum deformation optimization is formulated as a quadratic programming problem. It consists of the following components: (i) decision variables that represent the weights in the first hidden layer; (ii) a quadratic cost function that penalizes deviation of the nominal MAS trajectory from the desired MAS trajectory; and (iii) inequality safety constraints that ensure inter-agent collision avoidance. To validate the proposed approach, we simulate and present the results of continuum deformation on a large-scale quadcopter team tracking a desired helix trajectory, demonstrating improvements in safety and efficiency.
翻译:本文研究了解决大规模多代理系统(MAS)的安全和最优连续变形问题。我们提出了一种新的MAS连续变形协调方法,旨在使用单输入层、多个隐藏层和单个输出层的领导者-跟随者多层分层优化框架实现安全和高效的代理移动。输入层接收主要领导者的参考(材料)位置,隐藏层计算内部领导者和追随者的期望位置,输出层计算MAS配置的标称位置。通过引入MAS变形应变场的主要原理下限,我们获得线性不等式安全约束,并确保代理之间的碰撞避免。连续变形优化被构造为二次规划问题。它包括以下组件:(i)决策变量表示第一隐藏层的权重;(ii)二次成本函数惩罚标称MAS轨迹和期望MAS轨迹之间的偏差;(iii)不等式安全约束确保代理之间的碰撞避免。为了验证所提出的方法,我们模拟并呈现了一个大规模四轴飞行器小组,追踪一个期望的螺旋轨迹上的连续变形的结果,证明了安全性和效率的改进。